国产综合区_亚洲精品综合_68精品久久久久久欧美_欧美综合区_久久精品亚洲一区二区三区浴池_久久久亚洲成人

當(dāng)前位置:首頁(yè)>條據(jù)書信>二次根式乘除教學(xué)設(shè)計(jì)(模板18篇)

二次根式乘除教學(xué)設(shè)計(jì)(模板18篇)

時(shí)間:2023-12-09 09:23:28 作者:紫衣夢(mèng)

通過(guò)制定教學(xué)計(jì)劃,教師可以對(duì)教學(xué)內(nèi)容、教學(xué)方法和教學(xué)資源進(jìn)行合理的調(diào)配和安排。教學(xué)計(jì)劃的編寫要注重教學(xué)目標(biāo)和學(xué)科核心素養(yǎng)的培養(yǎng),以下是一些教學(xué)計(jì)劃范例供大家參考。

二次根式乘除教學(xué)設(shè)計(jì)

2、內(nèi)容解析。

二次根式除法法則及商的算術(shù)平方根的探究,最簡(jiǎn)二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個(gè)二次根式化成最簡(jiǎn)二次根式,是加減運(yùn)算的基礎(chǔ)。

基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡(jiǎn)二次根式。

1、教學(xué)目標(biāo)。

(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

(3)理解最簡(jiǎn)二次根式的概念、

2、目標(biāo)解析。

(1)學(xué)生能通過(guò)運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對(duì)簡(jiǎn)單的二次根式進(jìn)行運(yùn)算。

(3)通過(guò)觀察二次根式的運(yùn)算結(jié)果,理解最簡(jiǎn)二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡(jiǎn)二次根式。

本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來(lái)進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來(lái)進(jìn)行、二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡(jiǎn)化運(yùn)算、教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過(guò)程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

1、復(fù)習(xí)提問(wèn),探究規(guī)律。

問(wèn)題1二次根式的乘法法則是什么內(nèi)容?化簡(jiǎn)二次根式的一般步驟怎樣?

師生活動(dòng)學(xué)生回答。

【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過(guò)程,類比該過(guò)程,學(xué)生可以探究除法法則。

二次根式教學(xué)設(shè)計(jì)

1、通過(guò)二次根式混合運(yùn)算的學(xué)習(xí),進(jìn)一步了解二次根式運(yùn)算法則,知道二次根式混合運(yùn)算順序,會(huì)進(jìn)行二次根式的混合運(yùn)算。

2、在進(jìn)行二次根式混合運(yùn)算的過(guò)程中,體會(huì)類比思想,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),進(jìn)一步提高運(yùn)算能力。

教學(xué)難點(diǎn):類比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算。

教學(xué)過(guò)程:

一、情境誘導(dǎo)。

二、練習(xí)指導(dǎo)。

(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準(zhǔn)備,然后巡回指導(dǎo),了解情況、)。

三、展示歸納。

1、學(xué)生匯報(bào)解題過(guò)程,生說(shuō)師寫;。

2、發(fā)動(dòng)其他學(xué)生評(píng)價(jià)補(bǔ)充完善;。

3、師畫龍點(diǎn)睛強(qiáng)調(diào):。

(1)二次根式混合運(yùn)算的運(yùn)算順序跟有理數(shù)運(yùn)算順序一樣,先乘方,再乘除,最后加減。

(2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,因此可類比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。

四、變式練習(xí)。

(先讓學(xué)生獨(dú)立完成,老師做必要的板書準(zhǔn)備后巡回指導(dǎo),了解情況;然后讓有一定問(wèn)題的學(xué)生匯報(bào)展示,發(fā)動(dòng)學(xué)生評(píng)價(jià)完善,老師強(qiáng)調(diào)關(guān)鍵地方,總結(jié)思想方法。)。

五、小結(jié)。

本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒(méi)說(shuō)到的,老師補(bǔ)充。)。

六、布置作業(yè)。

中學(xué)二次根式除法教學(xué)設(shè)計(jì)

這節(jié)課的主要目標(biāo)有二:。

2。體驗(yàn)到分母有理化最簡(jiǎn)方法是先局部化簡(jiǎn);。

對(duì)于第一個(gè)目標(biāo)期望學(xué)生能自行歸納出來(lái)最簡(jiǎn)二次根式一般形式就最好,對(duì)于第二個(gè)目標(biāo)讓學(xué)生自行體驗(yàn)到先化簡(jiǎn)再分母有理化的方法是最簡(jiǎn)方法.

今天上午結(jié)束這節(jié)課后,頗有感觸.同學(xué)們討論問(wèn)題提的時(shí)候自始至終非常專注,而且很高效,有三個(gè)幾乎從來(lái)不舉手回答問(wèn)題的同學(xué)能大膽走上講臺(tái)給大家講解二次根式一道除法題的三種解法,他們的登臺(tái)引起全班同學(xué)的歡呼.這是組員們的'努力所帶來(lái)的結(jié)果.對(duì)于這節(jié)課有以下幾點(diǎn)值得思考:。

問(wèn)題的設(shè)置:。

這節(jié)課為了讓同學(xué)掌握二次根式的定義,我直接拋出“什么是二次根式”。

這個(gè)問(wèn)題讓同學(xué)們?nèi)ビ懻?但后來(lái)效果并沒(méi)有達(dá)到我想象的高度.其實(shí)后來(lái)想想這個(gè)問(wèn)題的設(shè)置不能過(guò)于直接,應(yīng)當(dāng)列舉諸多二次根式,讓同學(xué)們判斷哪些是二次根式,并討論其理由,這樣引導(dǎo)學(xué)生從感性過(guò)渡到理性.從而順利掌握這個(gè)概念的本質(zhì).所以問(wèn)題的設(shè)置不能死板,教條,要多樣化,其目的是讓學(xué)生能高效的掌握知識(shí)本身.

教學(xué)的規(guī)律:

1.循序漸進(jìn):這節(jié)課原本很希望學(xué)生能在一節(jié)課內(nèi)就體會(huì)到先局部化簡(jiǎn)后在進(jìn)行分母有理化的方法計(jì)算起來(lái)比較簡(jiǎn)潔.但這節(jié)課并沒(méi)有實(shí)現(xiàn)這個(gè)目的,而且沒(méi)有想到學(xué)生竟然給出多種方法.我想這一節(jié)課是否,對(duì)于第二個(gè)教學(xué)目標(biāo)只能是一個(gè)循序漸進(jìn)的過(guò)程,應(yīng)當(dāng)把這個(gè)問(wèn)題延伸到下一節(jié)課,可以在下一節(jié)課中把學(xué)生的課后作業(yè)的解法對(duì)比,讓學(xué)生去體會(huì)哪種方法更好,更簡(jiǎn)潔.不要急于在這一節(jié)課中去解決,這一節(jié)課只要能用自己的方法解決就行.

2.作業(yè)的處理:以前處理作業(yè)中總是對(duì)于做錯(cuò)的題目給一個(gè)紅叉,并每一份作業(yè)評(píng)分.從現(xiàn)在開(kāi)始,作業(yè)不再給紅叉,用橫線標(biāo)注代替紅叉,也不給評(píng)分.讓孩子們關(guān)注的永遠(yuǎn)是知識(shí)本身,對(duì)于作業(yè)始終強(qiáng)調(diào)的是誠(chéng)實(shí)的獨(dú)立作業(yè),認(rèn)真的糾錯(cuò)這兩點(diǎn).

二次根式教學(xué)設(shè)計(jì)

2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。

教學(xué)重點(diǎn)。

教學(xué)難點(diǎn)。

一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。

教學(xué)過(guò)程。

1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?

化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。

3.啟發(fā)學(xué)生回答:

二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?

1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:

滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:

(1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。

最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。

2.練習(xí):

下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:

3.例題:

例1把下列各式化成最簡(jiǎn)二次根式:

例2把下列各式化成最簡(jiǎn)二次根式:

4.總結(jié)。

把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。

1.把下列各式化成最簡(jiǎn)二次根式:

2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。

二次根式乘除教學(xué)設(shè)計(jì)

(2)會(huì)用公式化簡(jiǎn)二次根式。

(1)學(xué)生能通過(guò)計(jì)算發(fā)現(xiàn)規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;

(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡(jiǎn)二次根式。

教學(xué)問(wèn)題診斷分析。

本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡(jiǎn)化運(yùn)算感到困難、運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過(guò)的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣、,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣。

在教學(xué)時(shí),通過(guò)實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡(jiǎn)二次根式,一般有兩種情況:(1)如果被開(kāi)方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(jiǎn)(例見(jiàn)教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(hào)(例見(jiàn)教科書例6解法2);(2)如果被開(kāi)方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái),從而將式子化簡(jiǎn)。

本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡(jiǎn)。

1、復(fù)習(xí)引入,探究新知。

問(wèn)題1什么叫二次根式?二次根式有哪些性質(zhì)?

師生活動(dòng)學(xué)生回答。

【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡(jiǎn)需要用到二次根式的性質(zhì)。

問(wèn)題2教材第6頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng)學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語(yǔ)言描述乘法法則的內(nèi)容。

2、觀察比較,理解法則。

問(wèn)題3簡(jiǎn)單的根式運(yùn)算。

師生活動(dòng)學(xué)生動(dòng)手操作,教師檢驗(yàn)。

問(wèn)題4二次根式的乘除成立的條件是什么?等式反過(guò)來(lái)有什么價(jià)值?

師生活動(dòng)學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì)。

【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況、乘法法則反過(guò)來(lái)就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡(jiǎn)化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力。

3、例題示范,學(xué)會(huì)應(yīng)用。

例1化簡(jiǎn):(1)二次根式的乘除;(2)二次根式的乘除。

師生活動(dòng)提問(wèn):你是怎么理解例(1)的?

師生合作回答上述問(wèn)題、對(duì)于根式運(yùn)算的最后結(jié)果,一般被開(kāi)方數(shù)中有開(kāi)得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外、。

再提問(wèn):你能仿照第(1)題的解答,能自己解決(2)嗎?

例2計(jì)算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除。

師生活動(dòng)學(xué)生計(jì)算,教師檢驗(yàn)。

(3)例(3)的運(yùn)算是選學(xué)內(nèi)容、讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算、本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號(hào)外、。

【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡(jiǎn)化運(yùn)算、讓學(xué)生認(rèn)識(shí)到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用。

教材中雖然指明,如未特別說(shuō)明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要注意被開(kāi)方數(shù)的符號(hào)、可以根據(jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行判斷,在移出根號(hào)時(shí)正確處理符號(hào)問(wèn)題。

4、鞏固概念,學(xué)以致用。

練習(xí):教科書第7頁(yè)練習(xí)第1題、第10頁(yè)習(xí)題16、2第1題。

【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況。

5、歸納小結(jié),反思提高。

師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題:

(1)你能說(shuō)明二次根式的乘法法則是如何得出的嗎?

(2)你能說(shuō)明乘法法則逆用的意義嗎?

(3)化簡(jiǎn)二次根式的基本步驟是怎樣?一般對(duì)最后結(jié)果有何要求?

6、布置作業(yè):教科書第7頁(yè)第2、3題、習(xí)題16、2第1,6題。

1、下列各式中,一定能成立的是()。

【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ)。

2、化簡(jiǎn)二次根式的乘除______________________________。

【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式。

3、已知二次根式的乘除,化簡(jiǎn)二次根式二次根式的乘除的結(jié)果是()。

【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡(jiǎn)二次根式。

二次根式教學(xué)設(shè)計(jì)

教學(xué)目標(biāo):

掌握二次根式的概念;根據(jù)二次根式的概念掌握被開(kāi)方數(shù)的取值范圍。

教學(xué)重難點(diǎn):

重點(diǎn):二次根式的概念以及二次根式有意義的條件;

難點(diǎn):根據(jù)要求求滿足條件的字母的取值范圍。

教學(xué)方法:先學(xué)后教,當(dāng)堂訓(xùn)練。

課時(shí)安排:一課時(shí)。

教學(xué)過(guò)程:

1、知識(shí)回顧。

1、算數(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x叫做a的`算數(shù)平方根。

2、正數(shù)的算數(shù)平方根是正數(shù),0的算數(shù)平方根是0,負(fù)數(shù)沒(méi)有平方根。

2、板書課題。

3、出示學(xué)習(xí)目標(biāo)。

4、出示自學(xué)指導(dǎo)。

自學(xué)教材2、3頁(yè),完成下列各題:

1、完成第二頁(yè)思考題,找出二次根式的概念;

3、式子有意義的條件;

4、完成《基礎(chǔ)訓(xùn)練》課前預(yù)習(xí)。

5、檢測(cè)。

3、式子有意義的條件。

4、課前預(yù)習(xí)講解。

6、練習(xí)。

1、教材3頁(yè)練習(xí)題;

2、習(xí)題16.1第1、7題;

3、《基礎(chǔ)訓(xùn)練》課堂練習(xí)。

7、小結(jié)。

8、作業(yè)。

1、課本19頁(yè)第一題。

2、《基礎(chǔ)訓(xùn)練》課后練習(xí)。

3、思考學(xué)習(xí)拓展。

9、教學(xué)反思。

1、因?yàn)閷W(xué)生已學(xué)習(xí)過(guò)算數(shù)平方根,所以對(duì)本節(jié)課知識(shí)能較快掌握;

2、本節(jié)課的關(guān)鍵在于掌握二次根式有意義的條件:被開(kāi)方數(shù)大于等于0。同時(shí)結(jié)合之前所學(xué)知識(shí)能解答式子有意義時(shí)字母的取值范圍。

3、學(xué)習(xí)之初應(yīng)加強(qiáng)練習(xí),把課堂還給學(xué)生,發(fā)揮學(xué)生主動(dòng)型。

二次根式教學(xué)設(shè)計(jì)

3.a、b層同學(xué)自主學(xué)習(xí)15頁(yè)例1、例2、例3,c層同學(xué)至少完成例1、例2的學(xué)習(xí)。

小結(jié):

這節(jié)課你學(xué)到了什么知識(shí)?你有什么收獲?

作業(yè):課堂練習(xí)冊(cè)第5、6頁(yè)。

自學(xué)的`同時(shí)抽查部分同學(xué)在黑板上板書計(jì)算過(guò)程。抽2名c層同學(xué)在黑板上完成例1板書過(guò)程,學(xué)生在計(jì)算時(shí)若出現(xiàn)錯(cuò)誤,抽2名b層同學(xué)訂正。抽2名b層同學(xué)在黑板上完成例2板書過(guò)程,若出現(xiàn)錯(cuò)誤,再抽2名a層同學(xué)訂正。抽1名a層同學(xué)在黑板上完成例3板書過(guò)程,并做適當(dāng)?shù)姆治鲋v解。

此題是聯(lián)系實(shí)際的題目,需要學(xué)生先列式,再計(jì)算。并將結(jié)果精確到0.1m,學(xué)生考慮問(wèn)題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問(wèn)題的方案是否得當(dāng);2)考慮的問(wèn)題是否全面。3)計(jì)算是否準(zhǔn)確。

a層同學(xué)完成16頁(yè)練習(xí)1、2、3;b層同學(xué)完成練習(xí)1、2,可選做第3題;c層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問(wèn)題時(shí)共同分析矯正或請(qǐng)教老師。也可以抽查部分同學(xué)。例如:抽3名c層同學(xué)口答練習(xí)1;抽4名b層或c層同學(xué)在黑板上板書練習(xí)第2題;抽1名a層或b層同學(xué)在黑板上板書練習(xí)第3題后再分析講解。

點(diǎn)撥:

1)對(duì)的化簡(jiǎn)是否正確;

2)當(dāng)根式中出現(xiàn)小數(shù)、分?jǐn)?shù)、字母時(shí),是否能正確處理;

3)運(yùn)算法則的運(yùn)用是否正確。

先測(cè)試,再小組內(nèi)互批,查找問(wèn)題。學(xué)生反思本節(jié)課學(xué)到的知識(shí),談自己的感受。

小結(jié)時(shí)教師要關(guān)注:

1)學(xué)生是否抓住本課的重點(diǎn);

2)對(duì)于常見(jiàn)錯(cuò)誤的認(rèn)識(shí)。

把學(xué)習(xí)目標(biāo)由高到低分為a、b、c三個(gè)層次,教學(xué)中做到分層要求。

學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過(guò)程,可以提高學(xué)生能力,同時(shí)有利于激發(fā)學(xué)生的探索知識(shí)的欲望。

將二次根式的加減運(yùn)算融入實(shí)際問(wèn)題中去,提高了學(xué)生的學(xué)習(xí)興趣和對(duì)數(shù)學(xué)知識(shí)的應(yīng)用意識(shí)和能力。

小組成員互相檢查學(xué)生對(duì)于新的知識(shí)掌握的情況,鞏固學(xué)生剛掌握的知識(shí)能力。達(dá)到共同把關(guān)、合作互助的目的。

培養(yǎng)學(xué)生的計(jì)算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。

對(duì)課堂的問(wèn)題及時(shí)反饋,使學(xué)生熟練掌握新知識(shí)。

每個(gè)學(xué)生對(duì)于知識(shí)的理解程度不同,學(xué)生回答時(shí)教師要多鼓勵(lì)學(xué)生。

二次根式教學(xué)設(shè)計(jì)

(2)會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算;。

本節(jié)內(nèi)容主要是在做二次根式的`除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來(lái)進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來(lái)進(jìn)行。二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡(jiǎn)化運(yùn)算。教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過(guò)程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

重點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).。

難點(diǎn):二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

4。1第一學(xué)時(shí)。

問(wèn)題1二次根式的乘法法則是什么內(nèi)容?化簡(jiǎn)二次根式的一般步驟怎樣?

師生活動(dòng)學(xué)生回答。

【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過(guò)程,類比該過(guò)程,學(xué)生可以探究除法法則.。

2.觀察思考,理解法則。

問(wèn)題2教材第8頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng)學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問(wèn)題3對(duì)比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動(dòng)學(xué)生思考,回答。學(xué)生能說(shuō)明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過(guò)自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤。

問(wèn)題4對(duì)例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動(dòng)學(xué)生利用法則直接運(yùn)算,一般根號(hào)下不含分母和開(kāi)得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡(jiǎn)單的運(yùn)算。

問(wèn)題5對(duì)比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒(méi)有類似性質(zhì)?

師生活動(dòng)學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn)。

問(wèn)題2教材第8頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng)學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問(wèn)題3對(duì)比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動(dòng)學(xué)生思考,回答。學(xué)生能說(shuō)明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過(guò)自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤。

問(wèn)題4對(duì)例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動(dòng)學(xué)生利用法則直接運(yùn)算,一般根號(hào)下不含分母和開(kāi)得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡(jiǎn)單的運(yùn)算。

問(wèn)題5對(duì)比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒(méi)有類似性質(zhì)?

師生活動(dòng)學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn)。

例1計(jì)算:(1);(2);(3)。

師生活動(dòng)提問(wèn):你有幾種方法去掉分母中的根號(hào)?去分母的依據(jù)分別是什么?

【設(shè)計(jì)意圖】通過(guò)具體問(wèn)題,讓學(xué)生在實(shí)際運(yùn)算中培養(yǎng)運(yùn)算能力,訓(xùn)練運(yùn)算技能,

問(wèn)題5你能從例題的解答過(guò)程中,總結(jié)一下二次根式的運(yùn)算結(jié)果有什么特征嗎?

師生活動(dòng)學(xué)生總結(jié),師生共同補(bǔ)充、完善。要總結(jié)出:

(1)這些根式的被開(kāi)方數(shù)都不含分母;

(2)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式;

(3)分母中不含根號(hào);

【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),提出最簡(jiǎn)二次根式的概念,要強(qiáng)調(diào),在二次根式的運(yùn)算中,一般要把最后結(jié)果化為最簡(jiǎn)二次根式。

問(wèn)題6課件展示一組二次根式的計(jì)算、化簡(jiǎn)題。

【設(shè)計(jì)意圖】讓學(xué)生用總結(jié)出的結(jié)論進(jìn)行二次根式的運(yùn)算。

例2教材第9頁(yè)例7。

再提問(wèn)章引言中的問(wèn)題現(xiàn)在能解決了嗎?

【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)培養(yǎng)學(xué)生應(yīng)用二次根式的乘除運(yùn)算法則解決實(shí)際問(wèn)題的能力。

1.在、、中,最簡(jiǎn)二次根式為。

【設(shè)計(jì)意圖】考查對(duì)最簡(jiǎn)二次根式的概念的理解。

2.化簡(jiǎn)下列各式為最簡(jiǎn)二次根式:;。

【設(shè)計(jì)意圖】復(fù)習(xí)二次根式的運(yùn)算法則和運(yùn)算性質(zhì)。鼓勵(lì)學(xué)生用不同方法進(jìn)行計(jì)算。對(duì)于分母含二次根式的處理,要結(jié)合整式的乘法公式進(jìn)行計(jì)算。

3.化簡(jiǎn):(1);(2)。

【設(shè)計(jì)意圖】綜合運(yùn)用二次根式的概念、性質(zhì)和運(yùn)算法則進(jìn)行二次根式的運(yùn)算。

教科書第10頁(yè)練習(xí)第1,2,3題;

教科書習(xí)題16。2第10,11題。

二次根式教學(xué)設(shè)計(jì)

2、掌握把二次根式化為最簡(jiǎn)二次根式的方法。

重點(diǎn):化二次根式為最簡(jiǎn)二次根式的方法。

計(jì)算:

我們?cè)倏聪旅娴膯?wèn)題:

簡(jiǎn),得到。

從上面例子可以看出,如果把二次根式先進(jìn)行化簡(jiǎn),會(huì)對(duì)解決問(wèn)題帶來(lái)方便。

答:

1、被開(kāi)方數(shù)的因數(shù)是整數(shù)或整式;

2、被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。

滿足上面兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式。

例1試判斷下列各式中哪些是最簡(jiǎn)二次根式,哪些不是?為什么?

(1)不是最簡(jiǎn)二次根式。因?yàn)閍3=a2·a,而a2可以開(kāi)方,即被開(kāi)方數(shù)中有開(kāi)得盡方的因式。整數(shù)。

(3)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式x2+y2開(kāi)不盡方,而且是整式。

(4)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式a-b開(kāi)不盡方,而且是整式。

(5)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式5x開(kāi)不盡方,而且是整式。

(6)不是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)中的因數(shù)8=22·2,含有開(kāi)得盡的因數(shù)22。

指出:從(1),(2),(6)題可以看到如下兩個(gè)結(jié)論。

1、在二次根式的被開(kāi)方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡(jiǎn)二次根式;

2、在二次根式的被開(kāi)方數(shù)中的每一個(gè)因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡(jiǎn)二次根式。

例2把下列各式化為最簡(jiǎn)二次根式:

分析:把被開(kāi)方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。

例3把下列各式化成最簡(jiǎn)二次根式:

分析:題(1)的被開(kāi)方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡(jiǎn)二次根式。

題(2)及題(3)的被開(kāi)方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個(gè)根式的商的形式,再把分母有理化,把原式化成最簡(jiǎn)二次根式。

通過(guò)例2、例3,請(qǐng)同學(xué)們總結(jié)出把二次根式化成最簡(jiǎn)二次根式的方法。

答:如果被開(kāi)方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡(jiǎn)。

如果被開(kāi)方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開(kāi)得盡方的因式或因數(shù)開(kāi)出來(lái),從而將式子化簡(jiǎn)。

a、2b、3。

c、1d、0。

3、把下列各式化成最簡(jiǎn)二次根式:

答案:

1、b。

2、b。

1、最簡(jiǎn)二次根式必須滿足兩個(gè)條件:

(1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。

2、把一個(gè)式子化為最簡(jiǎn)二次根式的方法是:

(2)如果被開(kāi)方數(shù)含有分母,應(yīng)去掉分母的根號(hào)。

1、把下列各式化成最簡(jiǎn)二次根式:

2、把下列各式化成最簡(jiǎn)二次根式:

二次根式的乘除教學(xué)反思

這節(jié)課教學(xué)困難重重,因?yàn)榻?jīng)過(guò)一個(gè)星期的了解,整個(gè)班學(xué)生八年級(jí)升九年級(jí)的期末考試數(shù)學(xué)科目最高分56分,于是五十幾分的就成了本班的數(shù)學(xué)寶貝了,可五十幾分包括56分只有四人,三十幾分也沒(méi)幾個(gè),其他了都是二十幾以下了,學(xué)生已有的的數(shù)學(xué)基礎(chǔ)少得可憐,所以學(xué)生學(xué)習(xí)起來(lái)很困難,教學(xué)也寸步難行,雖然本節(jié)課的重點(diǎn)是二次根式的乘除法法則,難點(diǎn)是靈活運(yùn)用法則進(jìn)行計(jì)算和化簡(jiǎn),但是學(xué)生難明白只能放慢進(jìn)度,學(xué)生學(xué)會(huì)一點(diǎn)點(diǎn),極少數(shù)的人掌握了都成了我堅(jiān)持的理由。

教學(xué)的開(kāi)始從小學(xué)的口訣復(fù)習(xí)引入,進(jìn)入兩個(gè)相同的`數(shù)相乘用某數(shù)的平方表示的學(xué)習(xí),才真正進(jìn)入九年級(jí)探究將二次根式的性質(zhì)反過(guò)來(lái)就是二次根式的乘除法法則,利用這個(gè)法則進(jìn)行二次根式的乘法和除法運(yùn)算。

數(shù)學(xué)二次根式的乘除第一課時(shí)學(xué)案

例1判斷:

(1);()。

(2);()。

(3);()。

(4);()。

(5).()。

(要求學(xué)生找出錯(cuò)誤的原因,能進(jìn)行加減運(yùn)算的,要加以改正.)。

例2計(jì)算:

(1).。

解:

(2).。

解:

(3).。

解:

(4).。

解:

小結(jié):二次根式加減運(yùn)算的步驟:

(1)如果有括號(hào),根據(jù)去括號(hào)法則去掉括號(hào).。

(2)把不是最簡(jiǎn)二次根式的二次根式進(jìn)行化簡(jiǎn).。

(3)合并同類二次根式.。

例3當(dāng),時(shí),求代數(shù)式的值.。

解:

當(dāng)時(shí),時(shí),

原式。

例4已知,求下列各式的.近似值(精確到0.01):

(1);

(2).。

解:(1).。

當(dāng)時(shí),

原式.。

(2)。

當(dāng)時(shí),

原式.。

注意:求值時(shí),一般應(yīng)對(duì)代數(shù)式先化簡(jiǎn),再代入數(shù)值.。

(二)隨堂練習(xí)。

計(jì)算:

(1);

(2);

(3)已知,,求式子的近似值(精確到0.01).。

(三)總結(jié)、擴(kuò)展。

可通過(guò)例題加以說(shuō)明.。

練習(xí):教材p191中2(6)、(7),3;p194中7。

(四)布置作業(yè)。

(五)板書設(shè)計(jì)。

標(biāo)題。

1.例題2.練習(xí)題。

例1……3.小結(jié)。

例2……。

例3……。

八、背景知識(shí)與課外閱讀。

運(yùn)算。

最簡(jiǎn)二次根式

重點(diǎn)和難點(diǎn)。

過(guò)程設(shè)計(jì)。

計(jì)算:

我們?cè)倏聪旅娴膯?wèn)題:

簡(jiǎn),得到。

從上面例子可以看出,如果把二次根式先進(jìn)行化簡(jiǎn),會(huì)對(duì)解決問(wèn)題帶來(lái)方便.

答:

1.被開(kāi)方數(shù)的因數(shù)是整數(shù)或整式;

2.被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式.

滿足上面兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式.

(l)不是最簡(jiǎn)二次根式.因?yàn)閍3=a2·a,而a2可以開(kāi)方,即被開(kāi)方數(shù)中有開(kāi)得盡方的因式.

整數(shù).

(3)是最簡(jiǎn)二次根式.因?yàn)楸婚_(kāi)方數(shù)的因式x2+y2開(kāi)不盡方,而且是整式.

(4)是最簡(jiǎn)二次根式.因?yàn)楸婚_(kāi)方數(shù)的因式a-b開(kāi)不盡方,而且是整式.

(5)是最簡(jiǎn)二次根式.因?yàn)楸婚_(kāi)方數(shù)的因式5x開(kāi)不盡方,而且是整式.

(6)不是最簡(jiǎn)二次根式.因?yàn)楸婚_(kāi)方數(shù)中的因數(shù)8=22·2,含有開(kāi)得盡的因數(shù)22.

指出:從(1),(2),(6)題可以看到如下兩個(gè)結(jié)論.

1.在二次根式的被開(kāi)方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡(jiǎn)二次根式;

2.在二次根式的被開(kāi)方數(shù)中的每一個(gè)因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡(jiǎn)二次根式.

分析:把被開(kāi)方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。

分析:題(l)的被開(kāi)方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡(jiǎn)二次根式.

題(2)及題(3)的被開(kāi)方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個(gè)根式的商的形式,再把分母有理化,把原式化成最簡(jiǎn)二次根式.

通過(guò)例2、例3,請(qǐng)同學(xué)們總結(jié)出把二次根式化成最簡(jiǎn)二次根式的方法.

答:如果被開(kāi)方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡(jiǎn).

如果被開(kāi)方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開(kāi)得盡方的因式或因數(shù)開(kāi)出來(lái),從而將式子化簡(jiǎn).

a.2b.3。

c.1d.0。

答案:

1.b。

2.b。

(1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式.

(2)如果被開(kāi)方數(shù)含有分母,應(yīng)去掉分母的根號(hào).

答案:

最簡(jiǎn)二次根式

2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。

1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?

化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。

3.啟發(fā)學(xué)生回答:

二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?

1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:

滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:

(1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。

最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。

2.練習(xí):

下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:

3.例題:

4.總結(jié)。

把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。

2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。

本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開(kāi)方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開(kāi)方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。

字).

數(shù)學(xué)二次根式的乘除第一課時(shí)學(xué)案

二次根式的除法法則及其逆用,最簡(jiǎn)二次根式的概念。

2、內(nèi)容解析。

二次根式除法法則及商的算術(shù)平方根的探究,最簡(jiǎn)二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個(gè)二次根式化成最簡(jiǎn)二次根式,是加減運(yùn)算的基礎(chǔ)。

基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡(jiǎn)二次根式。

二、目標(biāo)和目標(biāo)解析。

1、教學(xué)目標(biāo)。

(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

2、目標(biāo)解析。

(1)學(xué)生能通過(guò)運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對(duì)簡(jiǎn)單的二次根式進(jìn)行運(yùn)算。

(3)通過(guò)觀察二次根式的運(yùn)算結(jié)果,理解最簡(jiǎn)二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡(jiǎn)二次根式。

三、教學(xué)問(wèn)題診斷分析。

本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來(lái)進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來(lái)進(jìn)行、二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡(jiǎn)化運(yùn)算、教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過(guò)程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

四、教學(xué)過(guò)程設(shè)計(jì)。

1、復(fù)習(xí)提問(wèn),探究規(guī)律。

問(wèn)題1二次根式的乘法法則是什么內(nèi)容?化簡(jiǎn)二次根式的一般步驟怎樣?

師生活動(dòng)學(xué)生回答。

【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過(guò)程,類比該過(guò)程,學(xué)生可以探究除法法則。

五、目標(biāo)檢測(cè)設(shè)計(jì)。

數(shù)學(xué)二次根式的乘除第一課時(shí)學(xué)案

(2)會(huì)用公式化簡(jiǎn)二次根式。

2、目標(biāo)解析。

(1)學(xué)生能通過(guò)計(jì)算發(fā)現(xiàn)規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;

(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡(jiǎn)二次根式。

教學(xué)問(wèn)題診斷分析。

本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡(jiǎn)化運(yùn)算感到困難、運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過(guò)的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣、,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣。

在教學(xué)時(shí),通過(guò)實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡(jiǎn)二次根式,一般有兩種情況:(1)如果被開(kāi)方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(jiǎn)(例見(jiàn)教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(hào)(例見(jiàn)教科書例6解法2);(2)如果被開(kāi)方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái),從而將式子化簡(jiǎn)。

本節(jié)課的教學(xué)難點(diǎn)為:二次根式的`性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡(jiǎn)。

教學(xué)過(guò)程設(shè)計(jì)。

1、復(fù)習(xí)引入,探究新知。

問(wèn)題1什么叫二次根式?二次根式有哪些性質(zhì)?

師生活動(dòng)學(xué)生回答。

【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡(jiǎn)需要用到二次根式的性質(zhì)。

問(wèn)題2教材第6頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng)學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語(yǔ)言描述乘法法則的內(nèi)容。

2、觀察比較,理解法則。

問(wèn)題3簡(jiǎn)單的根式運(yùn)算。

師生活動(dòng)學(xué)生動(dòng)手操作,教師檢驗(yàn)。

問(wèn)題4二次根式的乘除成立的條件是什么?等式反過(guò)來(lái)有什么價(jià)值?

師生活動(dòng)學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì)。

【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況、乘法法則反過(guò)來(lái)就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡(jiǎn)化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力。

3、例題示范,學(xué)會(huì)應(yīng)用。

例1化簡(jiǎn):(1)二次根式的乘除;(2)二次根式的乘除。

師生活動(dòng)提問(wèn):你是怎么理解例(1)的?

師生合作回答上述問(wèn)題、對(duì)于根式運(yùn)算的最后結(jié)果,一般被開(kāi)方數(shù)中有開(kāi)得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外、。

再提問(wèn):你能仿照第(1)題的解答,能自己解決(2)嗎?

例2計(jì)算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除。

師生活動(dòng)學(xué)生計(jì)算,教師檢驗(yàn)。

(3)例(3)的運(yùn)算是選學(xué)內(nèi)容、讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算、本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號(hào)外、。

【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡(jiǎn)化運(yùn)算、讓學(xué)生認(rèn)識(shí)到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用。

教材中雖然指明,如未特別說(shuō)明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要注意被開(kāi)方數(shù)的符號(hào)、可以根據(jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行判斷,在移出根號(hào)時(shí)正確處理符號(hào)問(wèn)題。

4、鞏固概念,學(xué)以致用。

練習(xí):教科書第7頁(yè)練習(xí)第1題、第10頁(yè)習(xí)題16、2第1題。

【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況。

5、歸納小結(jié),反思提高。

師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題:

(1)你能說(shuō)明二次根式的乘法法則是如何得出的嗎?

(2)你能說(shuō)明乘法法則逆用的意義嗎?

(3)化簡(jiǎn)二次根式的基本步驟是怎樣?一般對(duì)最后結(jié)果有何要求?

6、布置作業(yè):教科書第7頁(yè)第2、3題、習(xí)題16、2第1,6題。

五、目標(biāo)檢測(cè)設(shè)計(jì)。

1、下列各式中,一定能成立的是()。

【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ)。

【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式。

3、已知二次根式的乘除,化簡(jiǎn)二次根式二次根式的乘除的結(jié)果是()。

【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡(jiǎn)二次根式。

二次根式教學(xué)設(shè)計(jì)

1.使學(xué)生了解最簡(jiǎn)二次根式的概念和同類二次根式的概念.。

2.能判斷二次根式中的同類二次根式.。

3.會(huì)用同類二次根式進(jìn)行二次根式的加減.。

(二)能力訓(xùn)練點(diǎn)。

通過(guò)本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生的思維能力并提高學(xué)生的運(yùn)算能力.。

(三)德育滲透點(diǎn)。

(四)美育滲透點(diǎn)。

通過(guò)二次根式的加減,滲透二次根式化簡(jiǎn)合并后的形式簡(jiǎn)單美.。

二、學(xué)法引導(dǎo)。

三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法。

四、課時(shí)安排。

2課時(shí)。

五、教具學(xué)具準(zhǔn)備。

投影片。

1.復(fù)習(xí)最簡(jiǎn)二根式整式及的加減運(yùn)算,引入二次根式的加減運(yùn)算,盡量讓學(xué)生回答問(wèn)題.。

七、教學(xué)步驟。

(一)明確目標(biāo)。

(二)整體感知。

二次根式教學(xué)設(shè)計(jì)

(2)會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算;。

2學(xué)情分析。

本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來(lái)進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來(lái)進(jìn)行。二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡(jiǎn)化運(yùn)算。教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過(guò)程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

3重點(diǎn)難點(diǎn)。

重點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).。

難點(diǎn):二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

4教學(xué)過(guò)程。

4。1第一學(xué)時(shí)。

教學(xué)活動(dòng)。

活動(dòng)1【導(dǎo)入】復(fù)習(xí)提問(wèn),探究規(guī)律。

問(wèn)題1二次根式的乘法法則是什么內(nèi)容?化簡(jiǎn)二次根式的一般步驟怎樣?

師生活動(dòng)學(xué)生回答。

【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過(guò)程,類比該過(guò)程,學(xué)生可以探究除法法則.。

2.觀察思考,理解法則。

問(wèn)題2教材第8頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng)學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問(wèn)題3對(duì)比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動(dòng)學(xué)生思考,回答。學(xué)生能說(shuō)明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過(guò)自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤。

問(wèn)題4對(duì)例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動(dòng)學(xué)生利用法則直接運(yùn)算,一般根號(hào)下不含分母和開(kāi)得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡(jiǎn)單的運(yùn)算。

問(wèn)題5對(duì)比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒(méi)有類似性質(zhì)?

師生活動(dòng)學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn)。

活動(dòng)2【講授】觀察思考,理解法則。

問(wèn)題2教材第8頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng)學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問(wèn)題3對(duì)比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動(dòng)學(xué)生思考,回答。學(xué)生能說(shuō)明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過(guò)自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤。

問(wèn)題4對(duì)例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動(dòng)學(xué)生利用法則直接運(yùn)算,一般根號(hào)下不含分母和開(kāi)得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡(jiǎn)單的運(yùn)算。

問(wèn)題5對(duì)比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒(méi)有類似性質(zhì)?

師生活動(dòng)學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn)。

活動(dòng)3【活動(dòng)】例題示范,學(xué)會(huì)應(yīng)用。

例1計(jì)算:(1);(2);(3)。

師生活動(dòng)提問(wèn):你有幾種方法去掉分母中的根號(hào)?去分母的依據(jù)分別是什么?

【設(shè)計(jì)意圖】通過(guò)具體問(wèn)題,讓學(xué)生在實(shí)際運(yùn)算中培養(yǎng)運(yùn)算能力,訓(xùn)練運(yùn)算技能,

問(wèn)題5你能從例題的解答過(guò)程中,總結(jié)一下二次根式的運(yùn)算結(jié)果有什么特征嗎?

師生活動(dòng)學(xué)生總結(jié),師生共同補(bǔ)充、完善。要總結(jié)出:

(1)這些根式的被開(kāi)方數(shù)都不含分母;

(2)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式;

(3)分母中不含根號(hào);

【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),提出最簡(jiǎn)二次根式的概念,要強(qiáng)調(diào),在二次根式的運(yùn)算中,一般要把最后結(jié)果化為最簡(jiǎn)二次根式。

問(wèn)題6課件展示一組二次根式的計(jì)算、化簡(jiǎn)題。

【設(shè)計(jì)意圖】讓學(xué)生用總結(jié)出的結(jié)論進(jìn)行二次根式的運(yùn)算。

活動(dòng)4【練習(xí)】鞏固概念,學(xué)以致用。

例2教材第9頁(yè)例7。

再提問(wèn)章引言中的問(wèn)題現(xiàn)在能解決了嗎?

【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)培養(yǎng)學(xué)生應(yīng)用二次根式的乘除運(yùn)算法則解決實(shí)際問(wèn)題的能力。

活動(dòng)5【測(cè)試】目標(biāo)檢測(cè)設(shè)計(jì)。

1.在、、中,最簡(jiǎn)二次根式為。

【設(shè)計(jì)意圖】考查對(duì)最簡(jiǎn)二次根式的概念的理解。

2.化簡(jiǎn)下列各式為最簡(jiǎn)二次根式:;。

【設(shè)計(jì)意圖】復(fù)習(xí)二次根式的運(yùn)算法則和運(yùn)算性質(zhì)。鼓勵(lì)學(xué)生用不同方法進(jìn)行計(jì)算。對(duì)于分母含二次根式的處理,要結(jié)合整式的乘法公式進(jìn)行計(jì)算。

3.化簡(jiǎn):(1);(2)。

【設(shè)計(jì)意圖】綜合運(yùn)用二次根式的概念、性質(zhì)和運(yùn)算法則進(jìn)行二次根式的運(yùn)算。

活動(dòng)6【作業(yè)】布置作業(yè)。

教科書第10頁(yè)練習(xí)第1,2,3題;

教科書習(xí)題16。2第10,11題。

文檔為doc格式。

數(shù)學(xué)二次根式的乘除第一課時(shí)學(xué)案

上學(xué)期在教本節(jié)課開(kāi)始時(shí),首先由一個(gè)要在一塊長(zhǎng)方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個(gè)二次根式求和的運(yùn)算。從而提出問(wèn)題:如何進(jìn)行二次根式的加減運(yùn)算?這樣通過(guò)問(wèn)題指向本課研究的重點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣和強(qiáng)烈的求知欲望。

本節(jié)課是二次根式加減的第一節(jié)課,它是在二次根式的乘除的基礎(chǔ)上的進(jìn)一步學(xué)習(xí),目的是探索二次根式加減法運(yùn)算法則,在設(shè)計(jì)本課時(shí)教案時(shí),著重從以下幾點(diǎn)考慮:

1.先通過(guò)對(duì)實(shí)際問(wèn)題的解決來(lái)引入二次根式的加減運(yùn)算,再由學(xué)生自主討論并總結(jié)二次根式的加減運(yùn)算法則。

2.四人小組探索、發(fā)現(xiàn)、解決問(wèn)題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實(shí)際問(wèn)題的能力。

3.對(duì)法則的教學(xué)與整式的加減比較學(xué)習(xí)。

在理解、掌握和運(yùn)用二次根式的加減法運(yùn)算法則的學(xué)習(xí)過(guò)程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。

相關(guān)范文推薦
  • 12-09 學(xué)生暑期社區(qū)的實(shí)踐報(bào)告(專業(yè)19篇)
    實(shí)踐報(bào)告可以幫助我們更好地理解和應(yīng)用所學(xué)內(nèi)容,而且還有助于培養(yǎng)我們的觀察和表達(dá)能力。為了幫助大家更好地理解和掌握實(shí)踐報(bào)告的要領(lǐng),我們?yōu)榇蠹覝?zhǔn)備了一些范文供參考。
  • 12-09 全國(guó)科技工作者日心得收獲范文(21篇)
    工作心得的撰寫可以促進(jìn)我們對(duì)工作的思考和分析,幫助我們更好地理解和把握工作的本質(zhì)和要求。接下來(lái),小編將為大家分享一些寫作工作心得的技巧和方法,希望能夠幫助大家更
  • 12-09 創(chuàng)新發(fā)展演講稿(優(yōu)質(zhì)14篇)
    演講稿是在特定場(chǎng)合,以口頭形式向聽(tīng)眾傳達(dá)某種信息或表達(dá)觀點(diǎn)的一種文體。這是一份精心準(zhǔn)備的演講稿范文,內(nèi)容豐富,觀點(diǎn)鮮明,可以借鑒和學(xué)習(xí)。服務(wù)是什么?服務(wù)是履行職
  • 12-09 中班科學(xué)教案報(bào)春的花(熱門18篇)
    中班教案是幼兒園教師備課的重要參考資料,可以提供教學(xué)步驟、教學(xué)重點(diǎn)和教學(xué)方法等信息。以下是一些精選的中班教案,希望能夠?qū)τ變簣@教師們有所幫助。1、經(jīng)過(guò)有序探索、
  • 12-09 小花貓我的動(dòng)物朋友范文(16篇)
    優(yōu)秀作文的背后離不開(kāi)作者的用心和努力,每個(gè)學(xué)生都有寫出優(yōu)秀作文的潛力。小編為大家精選的這些優(yōu)秀作文范文,無(wú)論是題材的選擇還是表達(dá)的方式,都充滿了創(chuàng)造性和獨(dú)特性。
  • 12-09 老同學(xué)聚會(huì)策劃(優(yōu)質(zhì)20篇)
    一個(gè)完善的策劃書應(yīng)該清晰明確地描述項(xiàng)目的目標(biāo)和預(yù)期成果,以便對(duì)執(zhí)行過(guò)程進(jìn)行監(jiān)控和評(píng)估。接下來(lái),小編為大家提供一些優(yōu)秀策劃書的范文,希望能夠幫助大家更好地理解和應(yīng)
  • 12-09 難忘的潑水節(jié)小學(xué)(優(yōu)質(zhì)18篇)
    作文是一種文字的魔法,通過(guò)優(yōu)秀的作文可以把讀者帶入一個(gè)奇妙的世界。在這里,小編向大家分享了一些優(yōu)秀作文,希望能夠給大家?guī)?lái)一些靈感和啟示。1、學(xué)會(huì)本課12個(gè)生字
  • 12-09 冬天與春天(優(yōu)秀15篇)
    優(yōu)秀作文不僅要有文采和藝術(shù)性,更重要的是能夠準(zhǔn)確表達(dá)自己的意思,讓讀者理解和贊賞。以下是小編為大家收集的優(yōu)秀作文范文,希望能夠給大家提供一些寫作的參考。
  • 12-09 寫好朋友要互相幫助范文(17篇)
    優(yōu)秀作文能夠把抽象的概念和思想用生動(dòng)的文字形象地呈現(xiàn)出來(lái)。小編整理了一些優(yōu)秀作文范文,希望能夠給大家?guī)?lái)一些寫作上的靈感和啟示。我最好的朋友是慧君。她——一副小
  • 12-09 人可滅不可敗高中(優(yōu)質(zhì)21篇)
    優(yōu)秀作文不僅要有獨(dú)特的觀點(diǎn),還需要具備清晰的邏輯和流暢的語(yǔ)言。為了幫助大家更好地掌握優(yōu)秀作文的要領(lǐng),小編為大家整理了一些經(jīng)典范文,一起來(lái)學(xué)習(xí)吧。我們都有很多快樂(lè)

猜你喜歡

熱門推薦

主站蜘蛛池模板: 99在线精品免费视频 | 亚洲精品不卡午夜精品 | 欧美三级不卡视频 | 免费电视连续剧 | 亚洲人成网站观看在线观看 | 精品久久一区二区 | www高清 | 男人资源 | 日韩精品久久久久久 | 久久夜色精品国产亚洲噜噜 | 国产在线观看免费一级 | 亚洲婷婷综合色高清在线 | 国产做a爰片久久毛片a | 免费jjzz在在线播放国产成人 | 色综合天天射 | 久久福利一区二区 | 黄色理论视频 | 亚洲精品人成网在线播放影院 | 国产视频高清 | 一本久道热中字伊人 | 久久艹精品 | 久草热8精品视频在线观看 久草热草 | 日本高清视频wwww色 | 免费一看一级毛片 | 欧美午夜色大片在线观看免费 | 波多野结衣视频一区二区 | 日韩在线看片中文字幕不卡 | 国产成人精品日本亚洲网址 | 国产一区二区三区在线视频 | 六九视频在线观看 | 99久久精品免费观看国产 | 久久制服丝袜 | 人人爱人人草 | 女人被男人插视频 | 清纯漂亮小美女准备啪啪 | 国产精品大白天新婚身材 | 久久久久久人精品免费费看 | 国产精品一区二区在线观看 | 精品日本一区二区三区在线观看 | 国产三级日本三级在线播放 | 久久久久久久久久综合情日本 |