作為一名教職工,就不得不需要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時間。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的教案嗎?下面是我給大家整理的教案范文,歡迎大家閱讀分享借鑒,希望對大家能夠有所幫助。
分?jǐn)?shù)乘法北師大版教案篇一
1、每節(jié)課的內(nèi)容不易過多,不能貪多,貪多嚼不爛,學(xué)生不易一下全掌握。要分的稍微細(xì)致一些,以便學(xué)生理解掌握,也有利于知識的擴(kuò)展與深化。
2、分?jǐn)?shù)乘法中:求一個數(shù)的幾分之幾是本冊中的中心,是重點(diǎn)。本冊所有數(shù)與代數(shù)教學(xué)內(nèi)容都是圍繞著這一中心展開的。
3、由于我沒有經(jīng)驗,以至于在教學(xué)中沒有強(qiáng)化分率與數(shù)量的一一對應(yīng)關(guān)系。在后來的混合計算這一章中進(jìn)行應(yīng)用題教學(xué)學(xué)生理解起來有困難。
針對以上失誤,在今后教學(xué)中要補(bǔ)充的內(nèi)容是:
1、讓學(xué)生用畫圖的方式強(qiáng)化理解一個分?jǐn)?shù)的`幾分之幾用乘法計算。
2、強(qiáng)化分率與數(shù)量的一一對應(yīng)關(guān)系。
3、幫助學(xué)生理解“一個數(shù)的幾分之幾”與“一個數(shù)占另一個數(shù)”的幾分之幾的不同。
4、利用分?jǐn)?shù)化單位,如:2/5時=()分1/5噸=()千克
分?jǐn)?shù)乘法北師大版教案篇二
教學(xué)就是一個摸索的過程,年輕人有朝氣但缺經(jīng)驗,老教師有經(jīng)驗但缺熱情。雖然教了幾次六年級對于很多內(nèi)容的教法卻一直沒有定型也不能定型。
原來對于分?jǐn)?shù)乘法只是從做法上進(jìn)行教學(xué)師生都感覺很簡單,一般第一單元測試基礎(chǔ)差、思維差的同學(xué)也能考到90多分,所以為了節(jié)約時間,讓學(xué)生不只是乘,而把乘法這個單元一帶而過,和分?jǐn)?shù)除法一起學(xué)習(xí),在對比中讓學(xué)生明白道理,選擇做法。但綜合到一起學(xué)習(xí),學(xué)生剛開始也是錯誤百出,只能機(jī)械地告訴學(xué)生單位1已知用乘法,單位1未知用除法,加上學(xué)生約分出現(xiàn)約分不徹底,成了一鍋漿糊慢慢理。不過,這樣好像也能比進(jìn)度慢的老師成績好一點(diǎn),但對于基礎(chǔ)特差的學(xué)生似乎有點(diǎn)殘酷。
我決定在分?jǐn)?shù)乘法這一單元讓學(xué)生徹底明白道理,深入每位學(xué)生心里,一步一個腳印地學(xué)習(xí)。于是在學(xué)新課之前,我先對五年級的公因數(shù)、公倍數(shù)問題進(jìn)行復(fù)習(xí),發(fā)現(xiàn)這個難點(diǎn)依然值得深入復(fù)習(xí),學(xué)生對互質(zhì)數(shù)等基本概念都忘了,特殊數(shù)的最大公因數(shù)更是錯誤百出。深入對約分環(huán)節(jié)打好基礎(chǔ),也為整個小學(xué)階段的復(fù)習(xí)打下堅實的基礎(chǔ)。
然后讓學(xué)生應(yīng)用中多說道理,同桌互為老師講一講道理,避免學(xué)生理解表面化,真正理解了分?jǐn)?shù)乘整數(shù)的意義。分?jǐn)?shù)乘分?jǐn)?shù)讓學(xué)生折一折、涂一涂,操作中自然理解更深入,學(xué)習(xí)更有興趣。雖然多耗點(diǎn)時間,但這樣學(xué)習(xí)才能真正面向全體,基礎(chǔ)更扎實,后續(xù)學(xué)習(xí)更高效而有興趣。
知其然更要知其所以然,說著容易,但體現(xiàn)在教學(xué)的`每一步并不容易。
分?jǐn)?shù)乘法北師大版教案篇三
分?jǐn)?shù)乘法是在前面學(xué)生掌握了整數(shù)乘法、分?jǐn)?shù)加減法、分?jǐn)?shù)的意義和性質(zhì)等知識的基礎(chǔ)上進(jìn)行教學(xué)的。
1明晰分?jǐn)?shù)乘法的意義。分?jǐn)?shù)乘法包含兩種情況:一種是分?jǐn)?shù)乘整數(shù),另一種是分?jǐn)?shù)乘分?jǐn)?shù)。在教學(xué)分?jǐn)?shù)乘整數(shù)的意義中又分為兩種情況:一是分?jǐn)?shù)乘整數(shù);二是整數(shù)乘分?jǐn)?shù)。雖然它們的計算方法相同,但是表示的意義卻不相同。學(xué)生非常容易在此處出現(xiàn)意義上的模糊。例如:2/3×4表示4個2/3是多少,而4×2/3表示4的2/3是多少。教學(xué)分?jǐn)?shù)乘分?jǐn)?shù)的意義時,學(xué)生出錯較少,能夠清晰的表示出分?jǐn)?shù)乘分?jǐn)?shù)的意義。
2明確分?jǐn)?shù)乘法的計算方法。在教學(xué)中,對于分?jǐn)?shù)乘整數(shù)的計算方法要讓學(xué)生明確分?jǐn)?shù)的分子與整數(shù)相乘的積作分子,分母不變;而對于分?jǐn)?shù)乘分?jǐn)?shù)的計算方法要讓學(xué)生明確分子相乘的積作分子,分母相乘的積作分母。在計算中先約分,再計算,會使計算變得簡便。
1學(xué)生在計算分?jǐn)?shù)乘整數(shù)時,還是有個別同學(xué)把整數(shù)和分子約分計算,還有的出現(xiàn)先計算,再約分,容易出現(xiàn)約分后的分?jǐn)?shù)不是最簡分?jǐn)?shù)。
2在計算小數(shù)乘分?jǐn)?shù)時,學(xué)生容易出現(xiàn)小數(shù)與分母約分后得整數(shù)的現(xiàn)象。
3在簡便方法計算時,學(xué)生容易出現(xiàn)應(yīng)用乘法分配律進(jìn)行計算的錯誤。特別是形如2/9—2/9×7/16這樣的題目,學(xué)生往往不知道是應(yīng)該應(yīng)用乘法分配律來進(jìn)行計算。
1強(qiáng)調(diào)分?jǐn)?shù)乘整數(shù)的計算方法,特別是整數(shù)必須要與分母約分。
2強(qiáng)化練習(xí)形如2/9—2/9×7/16這樣的題目,避免學(xué)生在此題目上出錯。
分?jǐn)?shù)乘法北師大版教案篇四
分?jǐn)?shù)乘法這一單元內(nèi)容包括:分?jǐn)?shù)乘法的意義和計算方法以及分?jǐn)?shù)乘法的應(yīng)用。內(nèi)容不僅多并且較抽象,學(xué)生理解較難。
分?jǐn)?shù)乘法的意義在整數(shù)乘法的基礎(chǔ)上有了進(jìn)一步的拓展和延伸。特別是對一個數(shù)乘分?jǐn)?shù)的理解上是這一單元的重點(diǎn)和難點(diǎn)。利用圖形使抽象的問題直觀化,在本單元教學(xué)中就顯得重要了。
回顧分?jǐn)?shù)乘法這一單元教學(xué)的備課時一直被如何處理分?jǐn)?shù)乘法意義所困惑。后來一想,如果從數(shù)學(xué)應(yīng)用的角度來看,學(xué)生只要能從具體的實際問題中判斷兩個數(shù)據(jù)之間存在相乘的關(guān)系就可以了,而這個相乘的關(guān)系在本單元有了新的拓展,即“求幾個相同加數(shù)的和”、“求一個數(shù)的幾倍是多少”和“求一個數(shù)的幾分之幾是多少”。
在教學(xué)分?jǐn)?shù)和整數(shù)相乘時,根據(jù)學(xué)生的已有的知識基礎(chǔ),引導(dǎo)學(xué)生回憶復(fù)習(xí)整理整數(shù)乘法的意義和同分母分?jǐn)?shù)的加法的計算法則。另外科學(xué)的學(xué)習(xí)方法,能提高學(xué)習(xí)效率,能使學(xué)生的智慧得到充分發(fā)揮。
在教學(xué)分?jǐn)?shù)和整數(shù)相乘的計算法則時,我指導(dǎo)學(xué)生從讀一讀,說一說,練一練,想一想,議一議五個方面入手,例如:教學(xué)3/10×5,首先要讓學(xué)生明確,要求5個3/10相加的和,也就是求3/10+3/103/10+3/10+3/10是多少,并聯(lián)系同分母分?jǐn)?shù)加法的計算得出3+3+3+3+3/10,然后讓學(xué)生分析分子部分5個3連加就是3×5,并算出結(jié)果,在此基礎(chǔ)上,引導(dǎo)學(xué)生觀察計算過程,特別是3/10×5與5×3/10之間的聯(lián)系,從而理解為什么“同分子和整數(shù)相乘的積作分子,分母不變”。接著讓學(xué)生自己嘗試練一練6×3/10,然后進(jìn)行集體交流,看一看能不能在相乘之前的哪一步先約分,比一比在什么時候約分計算可以簡便一些,從而明白為了簡便,能約分的先約分。
在數(shù)量關(guān)系的理解時,緊緊依托于圖像的直觀性,這就是我們通常理解的圖形與數(shù)量的結(jié)合。變抽象為直觀,用直觀的圖示幫助學(xué)生理解抽象的文字表述,再逐步使學(xué)生脫離直觀上升到抽象語句的規(guī)律性理解和掌握。例如在教學(xué)一個數(shù)乘分?jǐn)?shù)的意義時,就要引導(dǎo)學(xué)生用圖示的方式方法理解把一個數(shù)平均分成了幾份,表示這樣的幾份,就是求這個數(shù)的幾分之幾是多少,反之求一個數(shù)的幾分之幾是多少,直接用乘法來列式即可。同時引導(dǎo)學(xué)生直觀的感知到了積小于被乘數(shù)的道理。下一步教學(xué)計算時更是要借助圖示來幫助理解等于幾的道理。用圖形表征讓學(xué)生充分觀察理解分?jǐn)?shù)乘分?jǐn)?shù)的這一比較復(fù)雜的計算過程。引導(dǎo)歸納得到一個規(guī)律性的結(jié)論:分子相乘做積的分子,分母相乘做積的分母,能約分的要先約分才比較簡便。
在分?jǐn)?shù)乘法的應(yīng)用時,主要是用畫線段圖的方式來幫助學(xué)生建立數(shù)量與分?jǐn)?shù)之間的對應(yīng)關(guān)系。進(jìn)一步使學(xué)生理解和明確分?jǐn)?shù)乘法的應(yīng)用就是對分?jǐn)?shù)乘法意義的拓展和深化。
數(shù)學(xué)的理解是離不開圖形的輔助的。圖形和數(shù)量是數(shù)學(xué)學(xué)習(xí)的一對相互依附的對象。要學(xué)好數(shù)學(xué)就要教師幫助學(xué)生建立用一定的符號、圖形來翻譯抽象的數(shù)學(xué)內(nèi)涵,變深邃為簡約,更有利于學(xué)生的深刻理解和掌握,為進(jìn)一步的學(xué)習(xí)數(shù)學(xué)知識積累數(shù)學(xué)活動的經(jīng)驗吧。
在教學(xué)《分?jǐn)?shù)乘法》時,我重點(diǎn)讓學(xué)生掌握分?jǐn)?shù)乘法的計算方法,堅持每天進(jìn)行口算訓(xùn)練。對于求一個數(shù)的幾分之幾是多少的應(yīng)用題,能聯(lián)系一個數(shù)乘分?jǐn)?shù)的意義進(jìn)行教學(xué),注重加強(qiáng)分析題目的數(shù)量關(guān)系,明確把誰看作單位"1",但也忽略了單位化聚的方法復(fù)習(xí)以及一些重點(diǎn)評講。以后應(yīng)從以下幾點(diǎn)來加強(qiáng)日常教學(xué)。
1、在教學(xué)中多進(jìn)行題組訓(xùn)練,突破難點(diǎn),讓學(xué)生充分感知提煉方法。
2、教學(xué)中要注意用線段圖表示題目的條件和問題,這有利于學(xué)生弄清以誰為標(biāo)準(zhǔn),讓學(xué)生用畫圖的方式強(qiáng)化理解一個分?jǐn)?shù)的幾分之幾用乘法計算。
3、幫助學(xué)生理解"一個數(shù)的幾分之幾"與"一個數(shù)占另一個數(shù)的幾分之幾"的不同。
4、加強(qiáng)單位化聚方法的復(fù)習(xí),如時=( )分 噸=( )千克。
通過努力結(jié)合現(xiàn)實的問題情境,引導(dǎo)學(xué)生理解分?jǐn)?shù)乘法的意義。練習(xí)計算是比較單調(diào)和枯燥的,為了避免單純的機(jī)械計算,將計算學(xué)習(xí)與解決問題有機(jī)結(jié)合。創(chuàng)設(shè)學(xué)生喜歡的實際情境,引導(dǎo)學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,列出算式。學(xué)生很容易結(jié)合整數(shù)乘法的意義,列出乘法算式。這樣處理,既有利于學(xué)生主動地把整數(shù)乘法的意義推廣到分?jǐn)?shù)中來,即分?jǐn)?shù)和整數(shù)相乘的意義與整數(shù)乘法的意義相同,都是求幾個相同加數(shù)和的簡便運(yùn)算,又可以啟發(fā)學(xué)生用加法算出3/10×5的結(jié)果。
總之,在上數(shù)學(xué)課時盡量地充分調(diào)動學(xué)生的各種感官,提高學(xué)生的學(xué)習(xí)興趣,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,使學(xué)生學(xué)會轉(zhuǎn)變?yōu)闀W(xué),真正掌握數(shù)學(xué)學(xué)習(xí)的方法。
分?jǐn)?shù)乘法北師大版教案篇五
教學(xué)了《分?jǐn)?shù)乘法(一)》。我將本課的教學(xué)目標(biāo)定位為理解分?jǐn)?shù)乘法的意義及算理、算法。與本課相聯(lián)系的學(xué)生的學(xué)習(xí)起點(diǎn)是整數(shù)、小數(shù)乘法的意義,算理與算法。分?jǐn)?shù)加減法的算理算法。我在復(fù)習(xí)鋪墊環(huán)節(jié),抓住了“分?jǐn)?shù)”、“乘法”兩個關(guān)鍵字。在備課時,可以從兩個角度進(jìn)行思考:第一,分?jǐn)?shù)乘法的算理、算法基礎(chǔ)是分?jǐn)?shù)加減法;第二,因為是乘法所以又涉及到乘法的意義。因此在教學(xué)時,我對分?jǐn)?shù)的加減法進(jìn)行了深入復(fù)習(xí),對乘法的.意義也進(jìn)行了強(qiáng)調(diào)。由此,再遷移出分?jǐn)?shù)乘法,學(xué)生覺得很輕松。
另外,許多同學(xué)在預(yù)習(xí)時已經(jīng)會算,即已經(jīng)通過自學(xué)知道算法是什么,但這僅是限于機(jī)械地記憶,沒有理解其背后的本質(zhì)。因此,在教學(xué)過程中,我認(rèn)為教師可以結(jié)合畫圖,幫助學(xué)生數(shù)形結(jié)合去理解乘法的意義和算法。算理和算法在本課中,我認(rèn)為已經(jīng)渾然一體,不需分割。在解釋算理的過程中,學(xué)生即總結(jié)出了算法。
分?jǐn)?shù)乘法北師大版教案篇六
分?jǐn)?shù)乘法一單元已經(jīng)學(xué)完,我們往往感覺學(xué)生學(xué)的很好。應(yīng)用分?jǐn)?shù)乘法的意義去解決問題,也能列出算式。其實不然,當(dāng)我們學(xué)學(xué)完第二單元分?jǐn)?shù)除法時,我們就會驚奇的發(fā)現(xiàn),原來事情不是這樣的。學(xué)生不知道是列方程還是直接去乘分?jǐn)?shù)。學(xué)生往往難于判斷究竟把那個數(shù)量作為去乘還是去除以幾分之幾。于是乎,我們的教學(xué)就又陷入了癱瘓。富有經(jīng)驗的老師在多次嘗試失敗以后,在此處,都既無可奈何又順理成章的選擇了五步走的方法。即:一,判斷單位一;二,畫圖;三,寫出數(shù)量關(guān)系式;四,判斷單位一已知還是未知;五,已知直接乘未知用方程。教參71頁提出現(xiàn)在采用方程解,化難為易,思路比較統(tǒng)一。所以,五步強(qiáng)調(diào)方程先入為主。其實不然,學(xué)生由于目前接觸到的都事用算術(shù)方法比較簡單的,所以方程的優(yōu)越性不是很明顯,學(xué)生還是選擇算數(shù)方法的比較多。我沒有過多的統(tǒng)一。而是任其自由選擇。
我重點(diǎn)思考的在于新教材與老教材先比,本部分知識簡化了那么多內(nèi)容,為什么還是學(xué)起來很費(fèi)勁呢?我想,我們的新課改目的是好的,素質(zhì)教育是好的但是,我們每個人從小接受的教育不都是德智體美勞全面發(fā)展嗎?什么時候我們都不能認(rèn)為減少數(shù)學(xué)知識容量就是素質(zhì)教育了。反而,正是因為減少了鍛煉的機(jī)會和次數(shù),我們學(xué)生的某些數(shù)學(xué)功能正在退化。我們都明白,只有加強(qiáng)鍛煉,我們的身體才能更強(qiáng)壯。數(shù)學(xué)能力也是如此。